

Attack analysis and Security concepts for MObile Network infrastructures supported by collaborative Information exchAnge

Countering Mobile Malware in the Network and directly on Smartphones

André Egners RWTH Aachen University

Motivation

- Mobile malware is on the rise
 - Easy to write malware with arbitrary functionality
 - Sensitive data on the phone attracts data thieves
 - Easy to distribute malware via uncontrolled app stores and websites
- Available anti mobile malware solutions are immature
 - Signature-based approaches and anomaly-based approaches proposed
 - Quality of solutions hard to measure/compare, depends on
 - Environment and type of misbehavior
 - Trained model in the anomaly-based variants

The General Problem

- Malware, Trojan, (Viruses)
- General issues with classical anti-virus products
 - Signature-based
 - Requires external experts for malware analysis and signature generation
 - Only able to detect malware that has been captured before
 - Comes with computation and storage overhead
- Are not well suited for smartphones
 - Still significantly slower
 - Frequent scanning is energy intensive

Our contributions

- Dynamic and static analysis of mobile malware
 - Classification of mobile malware based on traffic observable by a network operator
- 4G MOP sensor for in-network detection of mobile malware
 - Self-learning malware detection at the mobile operator
- Anomaly-based detection of mobile malware on the smartphones
 - Based on anomalies found in system call traces
 - Detection on per-app basis

Mobile Malware

Our classification from the mobile operator's perspective

Results from static and dynamic analysis of mobile

malware families

SMS only*

- Premium SMS, Bombers
- Mobile spyware, Botnets

HTTP only*

- Mobile spyware
- Botnets
- Hybrid architecture *
- Other types

^{*} our focus

In-Network Detection

Sensor Requirements

- Must requirements
 - Independent security unit
 - Easy to deploy and maintain
 - Extendible architecture
- Should requirements
 - Real-time filtering and detection
 - Diverse learning approaches
 - Online learning

Sensor Simulation & Demo

- List-based
 - Black & white
- Rule-based
 - Call modes
- Pattern-based
 - Regex C2 commands

Alternative Detection Methods

- Monitor behavior of
 - User
 - App
 - Phone
 - ...
- Compare traces of monitored behavior to model of benign behavior
 - Detect as suspicious if significantly different from benign behavior
 - Iterative learning
- Allows partial matching to known good behavior

9

Anomaly Detection (UE)

- UE System Call Monitoring
 - App → process
 - Logical coherence
 - Pre-trained models of benign behavior

Anomaly Detection Backend Ismoni

11

Backend Communication

- All mechanisms are transported using IP
- Event messages BSON encoded
 - Lightweight, traversable, efficient
- Regional Malware Collection Center
 - Signaling similar to S11 MME-SGW
- Top-level Malware Collection Center
 - Triggers more detailed event information
 - Initiate reactive measures (e.g., UE isolation)

Summary & Conclusion

- Manifold malware detection is necessary
- Our two-fold approach provides
 - In-network filtering and detection
 - UE-centric detection on per-app basis
- Intelligence aggregation within the MNO domain

sciencedaily.com